
Use of electricity exposes people constantly to
low-intensity, extremely low-frequency elec-
tromagnetic fields, particularly at the power
frequencies of 50 and 60 Hz. In previous
research (Lai and Singh 1997a),we found that
rats acutely exposed to a 60-Hz sinusoidal mag-
netic field showed an increase in DNA single-
and double-strand breaks in their brain cells as
measured by the microgel electrophoresis assay.
An increase in DNA single-strand breaks was
observed after 2 hr of exposure to the magnetic
field at flux density of ≥ 0.1 millitesla (mT),
whereas an increase in double-strand breaks
was observed at ≥ 0.25 mT. Using the micro-
gel electrophoresis assay, Ahuja et al. (1997,
1999), Phillips et al. (1997), Svedenstal et al.
(1999a, 1999b), and Zmyslony et al. (2000)
have also reported an increase in DNA strand
breaks in cells after magnetic field exposure.
In studies by Ahuja et al. (1997, 1999), an
increase in DNA single-strand breaks in
human lymphocytes was observed after 1 hr
of exposure to a 50-Hz magnetic field at
0.2–2 mT, whereas in the study by Phillips
et al. (1997), an increase in single-strand
breaks was observed in human Molt-4 cells
after 24 hr of exposure to a 60-Hz magnetic
field at 0.1 mT. Svedenstal et al. observed an
increase in DNA double-strand breaks in
brain cells of mice after 32 days of exposure to
magnetic fields of 7.5 µT (Svedenstal et al.
1999a) and after 14 days of exposure at
0.5 mT (Svedenstal et al. 1999b). Zmyslony
et al. (2000) reported an increase in single-
strand breaks in rat lymphocytes exposed to a

50-Hz magnetic field at 7 mT in the presence
of iron cations. More recently, Ivancsits et al.
(2002, 2003a, 2003b) reported an increase in
DNA single- and double-strand breaks in
human fibroblasts intermittently (5 min on/
10 min off) exposed to a 50-Hz magnetic field
at 1 mT, whereas continuous exposure pro-
duced no significant effect. Because the other
studies reporting effects of magnetic fields on
DNA were carried out under continuous expo-
sure conditions, the results of Ivancsits et al.
(2002, 2003a, 2003b) indicate that the inter-
action of magnetic fields with DNA is quite
complicated and apparently depends on many
factors. Furthermore, McNamee et al. (2002)
reported no significant effect on DNA strand
breaks in cerebellar cells of immature mice
exposed continuously to a 60-Hz magnetic
field at 1 mT for 2 hr. Miyakoshi et al. (2000)
reported that a high-intensity (> 50 mT) 
50-Hz magnetic field had no significant effect
alone, whereas it potentiated X-ray–induced
DNA single-strand breaks in human glioma
cells. Thus, effects of magnetic fields on DNA
may depend on factors such as the mode of
exposure, the type of cells studies, and the
intensity and duration of exposure.

In the present study, we further investi-
gated the effect and mechanism of interaction
of magnetic field exposure on brain cell DNA
in the rat. In a previous experiment (Lai and
Singh 1997b), we found that pretreating rats
with melatonin and a spin-trap compound
(N-tert-butyl-α-phenylnitrone) blocked the
effect of a 60-Hz magnetic field on DNA.

Because melatonin and spin-trap compounds
are efficient free-radical scavengers, the data
suggest that free radicals play a role in the
effect of the magnetic field. In another study
(Singh and Lai 1998), we found that acute
magnetic field exposure induced the formation
of DNA–protein and DNA–DNA cross-links
in brain cells of rats, which could be the results
of free-radical damage involving iron cations
(Altman et al. 1995; Lloyd et al. 1997).

In this study, effects of exposure duration
and treatments with the vitamin E analog
Trolox (Forrest et al. 1994), the nitric oxide
synthase inhibitor 7-nitroindazole (Kalisch
et al. 1996; Moore and Bland-Ward 1996),
and the iron chelator deferiprone (Fredenburg
et al. 1996; Kontoghiorghes 1995) were inves-
tigated. In addition, incidences of apoptosis
and necrosis in brain cells of rats acutely
exposed to a 60-Hz magnetic field were
studied.

Materials and Methods

Animals. Male Sprague-Dawley rats (2–3
months old, 250–300 g), purchased from
B & K Laboratory (Bellevue, WA), were used
in this research. They were housed for at least
24 hr before an experiment in the room in
which they would be exposed to magnetic
fields. The laboratory was maintained on a
12/12-hr light/dark cycle (light on 0700–
1900 hr), at an ambient temperature of 22°C
and a relative humidity of 65%. Animals
were provided with food and water ad libi-
tum in their home cages and during exposure.

In vivo magnetic field exposure system. A
Helmholtz coil pair system was used to expose
rats to a sinusoidal 60-Hz magnetic field.
This exposure system has been described in
detail previously (Lai et al. 1993). Briefly, a
computer program was used to design this
Helmholtz coil pair system, which can produce
a magnetic field with minimal heating and
field variations over the exposure area. Each coil
is made of two sets of 40 turns each of #6 wire
wound in rectangular loops, with minimum
internal dimensions of 0.86 × 0.543 m.
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Magnetic-Field–Induced DNA Strand Breaks in Brain Cells of the Rat
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In previous research, we found that rats acutely (2 hr) exposed to a 60-Hz sinusoidal magnetic
field at intensities of 0.1–0.5 millitesla (mT) showed increases in DNA single- and double-strand
breaks in their brain cells. Further research showed that these effects could be blocked by pretreat-
ing the rats with the free radical scavengers melatonin and N-tert-butyl-α-phenylnitrone, suggest-
ing the involvement of free radicals. In the present study, effects of magnetic field exposure on
brain cell DNA in the rat were further investigated. Exposure to a 60-Hz magnetic field at
0.01 mT for 24 hr caused a significant increase in DNA single- and double-strand breaks.
Prolonging the exposure to 48 hr caused a larger increase. This indicates that the effect is cumula-
tive. In addition, treatment with Trolox (a vitamin E analog) or 7-nitroindazole (a nitric oxide
synthase inhibitor) blocked magnetic-field–induced DNA strand breaks. These data further sup-
port a role of free radicals on the effects of magnetic fields. Treatment with the iron chelator
deferiprone also blocked the effects of magnetic fields on brain cell DNA, suggesting the involve-
ment of iron. Acute magnetic field exposure increased apoptosis and necrosis of brain cells in the
rat. We hypothesize that exposure to a 60-Hz magnetic field initiates an iron-mediated process
(e.g., the Fenton reaction) that increases free radical formation in brain cells, leading to DNA
strand breaks and cell death. This hypothesis could have an important implication for the possible
health effects associated with exposure to extremely low-frequency magnetic fields in the public
and occupational environments. Key words: apoptosis, DNA strand breaks, free radicals, iron,
magnetic field, necrosis. Environ Health Perspect 112:687–694 (2004). doi:10.1289/ehp.6355
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During construction, epoxy was layered
between loops to glue them together. This min-
imizes vibration noise when the coils are
activated. The coils are wound on frames fab-
ricated from wood and aluminum and are
therefore completely shielded against emission
of electric fields. They are designed with split
windings terminated on multiterminal blocks
so that they may be wired in various series or
parallel combinations for impedance matching
and connecting to multichannel or multifre-
quency sources. It is wired such that a switch
can be used to put the coils “in phase,” to
generate magnetic fields, or in the “bucking
mode,” in which the two sets of coil are acti-
vated in an antiparallel direction (with the
same current as in the in-phase condition) to
cancel the fields generated by each other. The
bucking mode was used as a control condition
in our research to control for the possible
effects of heat and vibration generated by the
coils. By varying the input current to the coils,
exposure fields could be set anywhere from the
ambient level to the maximum coil designed
magnetic field strength of 5.6 mT. With an
exposure level set at 1 mT, the heat dissipation
from each of the Helmholtz coils is < 8 W of
power. The heat generated is efficiently dissi-
pated because of the large surface area of the
coils and good ventilation in the exposure
room. The magnetic field during exposure was
monitored by input current to the Helmholtz
coils and measuring the magnetic flux density
with an EMDEX II magnetic field survey
meter (Enertech, Campbell, CA). The varia-
tion of the magnetic fields within the space
between the coils as determined by theoretical
calculation and actual measurement was ± 3%
of the mean. The ambient magnetic field in
our laboratory (i.e., when the power supply to
the coils was turned off) was 0.14 µT.

We have two similar exposure systems in
two separate rooms in our laboratory. Thus,
two exposure conditions could be run simulta-
neously. During exposure, rats were housed in
a plastic cage (length, 45 cm; width, 21 cm;
height, 22 cm) fitted with a Styrofoam cover.
The cage was placed at the center of the space
between the coils. During exposure, animals
were provided with food and drinking water.
Water was put in a plastic bottle fitted with a
glass spout inserted through the Styrofoam
cover. Up to three animals were exposed in a
cage at a time.

Experimental procedures for effects of
magnetic field exposure on DNA strand breaks
in brain cells. Magnetic field exposure at
0.01 mT for 24 and 48 hr. In this experi-
ment, rats were exposed in the Holmholtz coil
system for 24 or 48 hr. Controls were exposed
at the bucking mode for the same period of
time. Immediately after exposure, one rat at a
time was anesthetized by placing it in a cov-
ered foam box containing dry ice for 65 sec.

(A piece of cardboard was placed on top of
the dry ice to prevent its direct contact with
the animal.) The rat was then decapitated and
its brain was dissected out immediately for
DNA strand break assay. To allow time for
tissue processing, there was a 5-min time gap
between animals.

Effects of drug treatments. In drug treat-
ment experiments, there were four treatment
groups in each experiment: magnetic field/
drug, bucking/drug, magnetic field/drug
vehicle, and bucking/drug vehicle. Animals
were exposed for 2 hr to the magnetic field at
0.5 mT or exposed to the bucking mode. At
4 hr postexposure, animals were sacrificed as
described above and their brains removed for
DNA strand break assay. The 2-hr exposure/
4-hr waiting schedule was used in our previous
studies (Lai and Singh 1997a, 1997b).

The drug treatment schedules were as
follows: for Trolox (Sigma Chemical Co., St.
Louis, MO), 100 mg/kg/injection, dissolved
in 5% (wt/vol) propylene glycol, injected
intraperitoneally at a volume of 2 mL/kg at
24 hr before exposure and immediately after
exposure; for deferiprone (CP 20 L1, a gift
from R.A. Yokel, College of Pharmacy,
University of Kentucky, Lexington, KY),
15 mg/kg/injection, dissolved in physiologic
saline, injected intraperitoneally at a volume of
1 mL/kg immediately before and after expo-
sure; for 7-nitroindazole (Sigma), 50 mg/kg/
injection, dissolved in 5% (wt/vol) propylene
glycol, injected intraperitoneally at a volume
of 2 mL/kg at 30 min before exposure and
immediately after exposure.

Drug-injection controls were similarly
injected with an equal volume of the appropri-
ate vehicle. The drugs used in this study are
hydrophobic and could easily pass through the
blood–brain barrier.

Assay methods for DNA single- and
double-strand breaks. The microgel elec-
trophoresis assay for DNA single- and double-
strand breaks in rat brain cells was carried out
as described previously (Lai and Singh 1997b).
The technique involves making a microgel on
a microscopic slide. The microgel consists of a
cell suspension imbedded in low-melting-
temperature agarose and phosphate-buffered
saline (PBS). The cells are then lysed in the
microgel in high salt and detergents, treated
with proteinase K, and electrophoresed in a
highly alkaline condition for single-strand
break determinations and in a neutral condi-
tion for double-strand break determinations.
The DNA is then stained with a fluorescent
dye to allow visual measurement of the extent
of DNA migration, an index of DNA dam-
age. This method is more sensitive than other
available methods in detecting DNA strand
breaks. It can detect DNA single-strand
breaks induced by 0.01 Gy of γ-rays (Singh
et al. 1995) or 0.032 Gy of X rays (Singh

et al. 1994), and double-strand breaks
induced by 0.125 Gy of X rays (Singh and
Stephens 1997) in human lymphocytes.

All chemicals used in the assay were pur-
chased from Sigma unless otherwise noted.
Immediately after removal from the skull, a
brain was immersed in ice-cold PBS (NaCl,
8.01 g/L; KCl, 0.20 g/L; Na2HPO4, 1.15 g/L;
KH2PO4, 0.20 g/L, pH 7.4) containing
200 µM N-tert-butyl-α-phenylnitrone. The
brain was quickly washed four times with the
PBS to remove most of the red blood cells. A
tissue press was used to break up the brain tis-
sue into small pieces (~1 mm3) in 5 mL ice-
cold PBS (Singh 1998). Four more washings
with cold PBS removed most of the remaining
red blood cells. Finally, in 5 mL PBS, tissue
pieces were dispersed into single-cell sus-
pensions using a P-5000 Pipetman pipette
(Rainin Instruments, Oakland, CA). This cell
suspension consisted of different types of brain
cells. Ten microliters of this cell suspension was
mixed with 0.2 mL 0.5% agarose (high-resolu-
tion 3:1 agarose; Amresco, Solon, OH) main-
tained at 45°C, and 50 µL of this mixture was
pipetted onto a fully frosted slide (Erie
Scientific Co., Portsmouth, NH) and imme-
diately covered with a 24 × 50 mm rectangu-
lar #1 coverglass (Corning Glass Works,
Corning, NY) to make a microgel on the
slide. Slides were put in a cold steel tray on ice
for 1 min to allow the agarose to gel. The
coverglass was removed and 200 µL agarose
solution was layered as before. Slides were
then immersed in an ice-cold lysing solution
(2.5 M NaCl, 1% sodium N-lauroyl sarcosi-
nate, 100 mM disodium EDTA, 10 mM Tris
base, pH 10) containing 1% Triton X-100.

To measure single-strand DNA breaks,
after lysing for 3 hr at 4°C in an ice bath, slides
were treated with DNase-free proteinase K
(1 mg/mL; Amresco, Solon, OH) in the lysing
solution without detergents overnight at 37°C.
They were then put on the horizontal slab of
an electrophoretic assembly (Hoefer Scientific,
San Francisco, CA) modified so that both ends
of each electrode are connected to the power
supply. One liter of an electrophoresis buffer
[300 mM NaOH, 0.1% 8-hydroxyquinoline,
2% dimethyl sulfoxide (DMSO), and 10 mM
tetrasodium EDTA, pH 13] was gently poured
into the assembly to cover the slides to a height
of approximately 6.5 mm above their surface.
After allowing 20 min for DNA unwinding,
electrophoresis was started (0.4 V/cm,
~250 mA, for 60 min) and the buffer was
recirculated.

At the end of the electrophoresis, slides
were removed from the electrophoresis appara-
tus and immersed in an excess amount of neu-
tralization buffer (1 M ammonium acetate in
ethanol, consisting of 5 mL of 10 M ammo-
nium acetate in 45 mL absolute ethanol) in a
Coplin jar (two slides per jar) for 30 min.
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After neutralization, the slides were dehydrated
in absolute ethanol in a Coplin jar for 2 hr
followed by 5 min in 70% ethanol and then
air dried.

For double-strand breaks, microgel prepa-
ration and cell lysis were done as described
above. Slides were then treated with ribo-
nuclease A (Boehringer Mannheim Corp.,
Indianapolis, IN; 10 µg/mL in the lysing
solution) for 2 hr and then with proteinase K
(1 mg/mL in the lysing solution) overnight
at 37°C. They were then placed for 20 min
in an electrophoretic buffer (100 mM Tris,
300 mM sodium acetate, and acetic acid at
pH 9.0), and then electrophoresed for 1 hr at
0.4 V/cm (~100 mA). The slides were neu-
tralized and dehydrated in 1 M ammonium
acetate in absolute ethanol and 70% ethanol
and then air dried as described above.

Staining and DNA migration measure-
ment procedures were similar for both single-
and double-strand breaks. One slide at a time
was prestained with 50 µL 5% DMSO in
30 mM NaH2PO4 and 5% sucrose, and then
stained with 50 µL 1-µM solution of YOYO-1
(stock, 1 mM in DMSO from Molecular
Probes, Eugene, OR) and then covered with a
24 × 50 mm coverglass. Slides were examined
and analyzed with a Reichert vertical fluores-
cent microscope (model 2071) equipped with
a filter combination for fluorescent isothio-
cyanate (excitation at 490 nm, emission filter
at 515 nm, and dichromic filter at 500 nm).
We measured the length of DNA migration by
eye with a micrometer mounted in the eye-
piece of the microscope. The migration length
is defined as the length (in micrometers) from
the beginning of the nuclear area to the last
three pixels of DNA perpendicular to the
direction of migration at the leading edge. It is
used as the index of DNA strand breaks.

Two slides were prepared from the brain
of each animal: one for assay of DNA single-
strand breaks and the other for double-strand
breaks. Fifty cells were randomly chosen and
scored from each slide. However, cells that
showed extensive damage with DNA totally
migrated out from the nuclear region were
not included in the measurement. These
highly damaged cells probably resulted from
the tissue and cell processing procedures, and
they occurred equally in magnetic-field–
exposed and bucking samples. Therefore,
from each animal, 50 cells each were scored
for single- and double-strand DNA breaks.
The average migration length from 50 cells of
a slide (an animal) was calculated and used in
data analysis.

Effects of magnetic field exposure on apop-
tosis and necrosis of brain cells. In this experi-
ment, rats were exposed to magnetic field
(0.5 mT) for 2 hr or to the bucking mode.
The method of Singh (2000) was used to
study apoptosis and necrosis. This method

has been validated with two other methods of
apoptosis measurement (morphologic estima-
tion and DNA ladder pattern) using several
known apoptosis inducers (Singh 2000).

At 4 hr postexposure, microgel from brain
cells was made and processed as described
above for the microgel electrophoresis assay to
remove lipid and protein. Instead of elec-
trophoresis, slides were immersed for 10 min
in 0.3 M NaOH and 0.2% DMSO to reveal
apoptotic and necrotic cells. Then they were
immersed in 1 M ammonium acetate in 50%
ethanol for 10 min and then in 100% ethanol
with 1 mg/mL spermine for 2 hr to fix the
DNA in agarose. Slides were then immersed
for 5 min in 70% ethanol. Slides were dried
at room temperature and, after staining with
YOYO-1, observed under a fluorescent
microscope for characteristics of apoptosis
and necrosis. The percentage of cells undergo-
ing apoptosis and necrosis was scored from
each slide.

In general, apoptosis is caused by pro-
grammed cleavage of DNA into a unique size
of approximately 186 bases and its multiples.
After cells are lysed, DNA from apoptotic
cells, in alkaline condition, would diffuse in
agarose in a wider area than that of normal
cells. Because of this diffusion, DNA is lightly
stained. Cells in early apoptosis are easily lysed
and show a dense, diffuse, lightly stained,
and granular DNA. These are easy to observe
because of their larger size and diffuse staining
characteristics. Cells in late apoptosis show
highly condensed chromatin (intensely stained),
even after lysis, and diffused DNA around
this condensed spot. In general, nuclear DNA
outline in apoptotic cells is diffuse and fuzzy.
However, necrotic cells appear different from
apoptotic cells after lysis and staining. Because
of DNA strand breaks at random and at fewer
sites, the nuclear DNA outline is sharply
defined but occupies significantly larger area
compared with normal cells.

The experiment was run under blind con-
dition; that is, the experimenters who prepared
the slides and did the DNA strand-break,
apoptosis, and necrosis measurements did not
know the treatment conditions of the animals
from which the slides were prepared.

Data analysis. Data from the DNA strand
break assay were analyzed by the one-way
analysis of variance (ANOVA), and difference
between two groups was evaluated by the
Newman-Keuls test. Data of apoptosis and
necrosis were analyzed by the Mann-Whitney
U-test. A difference at p < 0.05 was considered
statistically significant.

Results

Effects of 24- and 48-hr exposures to a 
0.01-mT, 60-Hz magnetic field on DNA sin-
gle- and double-strand breaks in rat brain
cells are shown in Figures 1–4. Figures 1

and 2 show that magnetic field exposure
increased single- and double-strand breaks,
respectively, in brain cells. In addition, pro-
longing the duration of exposure from 24 to
48 hr significantly increased cumulative single-
and double-strand breaks in cells: Single-strand
breaks: F(3,28) = 28.66, p < 0.01; 24-hr vs.
bucking, p < 0.01; 48-hr vs. bucking, p < 0.01;
24-hr vs. 48-hr, p < 0.01. Double-strand
breaks: F(3,28) = 17.91, p < 0.01; 24-hr vs.
bucking, p < 0.01; 48-hr vs. bucking, p < 0.01;
24-hr vs. 48-hr, p < 0.05. Figures 3 and 4
show, respectively, the distribution of cells
according to their migration lengths of single
and double DNA strand break measurements.
Increase in cells with higher DNA strand
breaks (longer DNA migration) shifts the dis-
tribution pattern to the right. The distribution
patterns support the conclusion above from the
data shown in Figures 1 and 2.

Effects of treatment with Trolox on mag-
netic-field–induced DNA single- and double-
strand breaks are presented in Figures 5 and 6,
respectively. ANOVA of the data shows signif-
icant treatment effect on both types of breaks:
F(3,28) = 79.61, p < 0.001 for single-strand
breaks, and F(3,28) = 49.59, p < 0.001 for
double-strand breaks. Treatment with Trolox
blocked the effects of the magnetic field on
DNA strand breaks in brain cells.

Effects of deferiprone treatment are shown
in Figures 7 and 8. Deferiprone treatment
blocked the magnetic-field–induced increases
in single- and double-strand breaks in brain
cells [ANOVA shows significant treatment
effects: F(3,26) = 33.53, p < 0.001 for single-
strand breaks; F(3,26) = 49.02, p < 0.001 for
double-strand breaks].

Similarly, the effects of 7-nitroindazole
treatment are shown in Figures 9 and 10. 
7-Nitroindazole treatment also blocked 
magnetic-field–induced increases in single-
and double-strand breaks in brain cells
[ANOVA shows significant treatment effects:
F(3,26) = 50.52, p < 0.001 for single-strand
breaks; F(3,26) = 22.57, p < 0.001 for double-
strand breaks].

Data on apoptosis and necrosis of brain
cells of rats after exposure to the 60-Hz mag-
netic field are shown in Table 1. Both apoptosis
and necrosis were significantly increased by
magnetic field exposure.

Discussion

Taken together, results from this series of
experiments and our previous research show
that by prolonging the duration of magnetic
field exposure, DNA strand breaks can be
observed in brain cells of the rat at a lower
flux density. In previous research (Lai and
Singh 1997a, 1997b), we found no significant
increase in DNA double-strand breaks in
brain cells of rats exposed for 2 hr to a
0.1-mT 60-Hz magnetic field. In the present
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experiment, a significant increase in double-
strand breaks was observed at 0.01 mT after
24 hr of exposure. These data indicate an
interaction between intensity and duration of
exposure on biologic effects of magnetic
fields. More interestingly, a significantly larger
increase in DNA single- and double-strand
breaks was observed after 48 hr of exposure
compared with 24-hr exposure. This suggests
a cumulative nature of the effects.

Results from the drug-treatment experi-
ments indicate the following: a) Trolox treat-
ment can block the effects of magnetic fields
on DNA strand breaks. This further supports

the hypothesis that these effects of magnetic
fields are mediated by free radicals, because
Trolox is a potent free radical scavenger
(Forrest et al. 1994). b) Nitric oxide may also
be involved in the effects of magnetic fields on
DNA (nitric oxide is also a free radical and
plays important roles in cell functions). c) Data
from the deferiprone treatment study suggest
that iron may play a role in the effects of mag-
netic fields. This may also support the free rad-
ical hypothesis because iron is closely involved
in free radical formation (e.g., via the Fenton
reaction) in cells.

Relevant to our finding that magnetic fields
can cause iron-dependent DNA strand breaks is
that iron is present in higher concentration in
the nucleus than in the cytoplasm because of
the presence of an ATPase-related iron pump
on the nuclear membrane (Meneghini 1997).
Another study has reported iron atoms interca-
lated in DNA molecules, and DNA–ferrous
iron complexes could enhance hydroxy radical
formation from hydrogen peroxide compared
with ferrous iron alone (Floyd 1981). These
make DNA more vulnerable to iron-catalyzed
free radical attack.

Increases in apoptosis and necrosis in brain
cells of rats exposed to magnetic fields may
also be related to free radical formation. Both
hydroxy radical and nitric oxide have been
shown to cause apoptotic and necrotic cell
death, especially in brain cells (Simonian and
Coyle 1996). In addition to the present study,
others have shown apoptosis in various other
cell types after exposure to extremely low-
frequency electromagnetic fields (Blumenthal
et al. 1997; Ismael et al. 1998; Phillips et al.
1997; Simko et al. 1998; Singh et al. 1994).

The free radical hypothesis that extremely
low-frequency electromagnetic fields increase
free radical activity in cells has been proposed
by various researchers (Grundler et al. 1992;
Reiter 1997). Effects of magnetic fields on
cellular kinetics of free radicals (Eveson et al.
2000; Khadir et al. 1999; Roy et al. 1995)
and free radical–related cellular processes
(Fiorani et al. 1997; Katsir and Parola 1998)
have been reported. Free radical–induced
damage to DNA could have important effects
on health (Beckman and Ames 1997). In
addition to DNA damage, free radicals can
cause damage in other biologic molecules,
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Figure 1. Effects of 24 and 48 hr of exposure to
a 0.01-mT, 60-Hz magnetic field on DNA single-
strand breaks in brain cells of the rat. n = 8 for each
treatment group. Magnetic field significantly differ-
ent from sham at p < 0.01 for both 24- and 48-hr
exposure.
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Figure 2. Effects of 24 and 48 hr of exposure to a
0.01-mT, 60-Hz magnetic field on DNA double-
strand breaks in brain cells of the rat. n = 8 for each
treatment group. Magnetic field significantly differ-
ent from sham at p < 0.01 for both 24- and 48-hr
exposure.

Figure 3. Percentage distribution of cells as a function of DNA migration length (single-strand breaks) of
the data shown in Figure 1. (A) Bucking. 24 hr. (B) Bucking, 48 hr. (C) 0.01 mT, 24 hr. (D) 0.01 mT, 48 hr.
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such as lipids and proteins, and can pro-
foundly affect cellular homeostasis. In addi-
tion, under subtoxic conditions, free radicals
are known to play an important role in cellu-
lar signal transduction processes (Suzuki et al.
1997). Disturbance in free radical metabolism
could affect these biomolecular processes and
cell functions.

Data from the present experiments suggest
that magnetic-field–induced DNA strand
breaks are caused by an iron-mediated free rad-
ical process, probably via the Fenton reaction,
which converts hydrogen peroxide to the more
potent and toxic hydroxy radical (Figure 11).
Iron-induced oxidant formation is known to
cause DNA strand breaks, DNA–protein
cross-links, and activation of protein kinase C;
increase the production of heat-shock pro-
teins; and alter calcium homeostasis in cells
(Altman et al. 1995; Farber 1994; Mello Filho
and Meneghini 1984; Meneghini 1997; Stohs
and Bagchi 1995). Other recent experiments
have also implicated the involvement of
iron/transition metals in the effects of electro-
magnetic fields. Zmyslony et al. (2000)
reported an increase in DNA strand breaks in

lymphocytes exposed to a 50-Hz magnetic
field in the presence of ferrous chloride in the
medium, whereas exposing the cells in the
absence of ferrous ion had no significant
effect. Further experiments from the same
group of researchers (Jajte et al. 2001) showed
that the effect was blocked by melatonin, sug-
gesting the involvement of free radicals. An
experiment by Lourencini da Silva et al.
(2000) also implies that electromagnetic fields
can cause damage in DNA plasmids in the
presence of a transition metal (tin).

Our data show that inhibition of nitric
oxide synthase by 7-nitroindazole can com-
pletely block the effects of magnetic fields on
DNA. We propose that the effects of mag-
netic fields manifest through a two-stage
process. In the first step, magnetic field expo-
sure affects iron homeostasis in certain cells,
leading to an increase in free iron in the cyto-
plasm and nucleus, which in turn leads to an
increase in hydroxy radicals, via the catalytic
reaction of the Fenton reaction, which dam-
age DNA, lipids, and proteins. Damage to
lipids (lipid peroxidation) in the cellular mem-
brane in turn leads to an increase in calcium

leakage from internal storage sites in the cell.
This will trigger the second step, an increase in
nitric oxide synthesis via the activation of
calmodulin-dependent nitric oxide synthase. 
7-Nitroindazole is an effective blocker of that
enzyme (Kalisch et al. 1996). Involvement of
nitric oxide in the biologic effects of magnetic
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Figure 4. Percentage distribution of cells as a function of DNA migration length (double-strand breaks) of
the data shown in Figure 2. (A) Bucking, 24 hr. (B) Bucking, 48 hr. (C) 0.01 mT, 24 hr. (D) 0.01 mT, 48 hr.
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Figure 5. Effect of treatment with Trolox on mag-
netic-field–induced increase in DNA single-strand
breaks in rat brain cells (mean ± SE). Trolox
(100 mg/kg) was injected intraperitoneally at 24 hr
and immediately before exposure to a magnetic
field or the bucking mode. Drug-treatment controls
were similarly injected with equal volume of the
drug vehicle (propylene glycol). n = 8 for each treat-
ment group. Magnetic field significantly different
from sham at p < 0.01 in vehicle-treated animals. No
significant difference between magnetic field and
sham in Trolox-treated animals.
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Figure 6. Effect of treatment with Trolox on magnetic-
field–induced increase in DNA double-strand breaks
in rat brain cells (mean ± SE). Treatment conditions
were similar to those described for Figure 5. n = 8 for
each treatment group. Magnetic field significantly
different from sham at p < 0.01 in vehicle-treated ani-
mals. No significant difference between magnetic
field and sham in Trolox-treated animals.
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fields has been proposed by Adey (1997) and
Yoshikawa et al. (2000).

In the second stage, DNA and other
macromolecular damages are probably caused
mainly by nitric oxide. Because the hydroxy
radical has only a short distance of action

(~40 Å), whereas nitric oxide can diffuse the
distance of several cell diameters, the transition
from stage 1 to stage 2 changes the magnetic-
field–triggered free radical damage from a
localized event to a more widespread phenom-
enon. Nitric oxide can further amplify 

iron-mediated free radical formation via its
effects on iron metabolism (Richardson and
Ponka 1997) and release of iron from ferritin
(Reif and Simmons 1990). Thus, the effects
will amplify. This damage can lead to two pos-
sible outcomes: a) Exogenous and endogenous
cellular antioxidation processes will keep the
damage in check by neutralizing free radicals,
and eventually the cell will repair itself and sur-
vive. However, DNA damage and repair could
lead to mutation and increase the chance of car-
cinogenesis. b) If the processes of free radical
damage are not checked by cellular antioxida-
tion and repair processes, the cell will die,
because free radical peroxidation of lipids is a
chain reaction. Both apoptosis and necrosis are
possible. Increase in necrosis is probably a con-
sequence of lipid peroxidative damage in cell
membranes, especially that of mitochondria,
whereas apoptosis is mainly triggered by DNA
damage. The outcome of oxidative damage
induced by magnetic fields will therefore
depend on various factors, including the oxida-
tive status of the cell, capability of endogenous
antioxidation enzymes and processes to coun-
teract free radical buildup, availability of exoge-
nous antioxidants, iron homeostasis (a balance
of iron influx, storage, and use), the parameters
of exposure (e.g., intensity and duration of
exposure and possibly the waveform of the
magnetic field), and whether the oxidative
damage is cumulative. Oxidative damage to
DNA and its subsequent misrepair (i.e., mis-
takes in repairing the damage) are probably
cumulative. To add to this, nitric oxide can be
either mutagenic or cytotoxic (i.e., causing
cell death) depending on intracellular condi-
tions. It has been suggested that nitric oxide is
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Table 1. Apoptosis and necrosis of brain cells of
rats after exposure to magnetic fields.

Percent No. p-Value

Apoptosis
Magnetic field 0.61 8
Bucking 0.28 8 < 0.025

Necrosis
Magnetic field 1.88 8
Bucking 0.99 8 < 0.02

Figure 7. Effect of treatment with deferiprone on
magnetic-field–induced increase in DNA single-
strand breaks in rat brain cells (mean ± SE).
Deferiprone (5 mg/kg) was injected intraperi-
toneally immediately before and after exposure to
a magnetic field or to the bucking mode. Drug-
treatment controls were similarly injected with
equal volume of the drug vehicle (physiologic
saline). n = 8 for vehicle group, 7 for deferiprone
treatment group. Magnetic field significantly differ-
ent from sham at p < 0.01 in vehicle-treated ani-
mals. No significant difference between magnetic
field and sham in deferiprone-treated animals.
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Figure 8. Effect of treatment with deferiprone on
magnetic-field–induced increase in DNA double-
strand breaks in rat brain cells (mean ± SE).
Treatment conditions were similar to those
described for Figure 7. n = 8 for vehicle group, 7 for
deferiprone treatment group. Magnetic field signifi-
cantly different from sham at p < 0.01 in vehicle-
treated animals. No significant difference between
magnetic field and sham in deferiprone-treated
animals.
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Figure 9. Effect of treatment with 7-nitroindazole (7-
NI) on magnetic-field–induced increase in DNA
single-strand breaks in rat brain cells (mean ± SE).
7-NI (50 mg/kg) was injected intraperitoneally at 30
min before and immediately after exposure to a
magnetic field or to the bucking mode. Drug-treat-
ment controls were similarly injected with equal
volume of the drug vehicle (propylene glycol). n = 8
for each treatment group. Magnetic field signifi-
cantly different from sham at p<0.01 in vehicle-
treated animals. No significant difference between
magnetic field and sham in 7NI-treated animals.
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Figure 10. Effect of treatment with 7-nitroindazole
(7-NI) on magnetic-field–induced increase in DNA
double-strand breaks in rat brain cells (mean ± SE).
Treatment conditions were similar to those
described for Figure 9. n = 8 for each treatment
group. Magnetic field significantly different from
sham at p < 0.01 in vehicle-treated animals. No sig-
nificant difference between magnetic field and
sham in 7NI-treated animals.
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Figure 11. Schematic diagram of mechanism of
effect of magnetic fields involving the Fenton reac-
tion and free radicals.
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mutagenic when the intracellular level of
reduced glutathione is low, but cytotoxic (lead-
ing to apoptosis and inhibition of tumor
growth) in a thiol-rich cellular environment
that favors the formation of toxic nitrosothiols
(Felley-Bosco 1998).

Summing up, we propose that magnetic
fields initiate an iron-dependent free radical
generation process in cells, which can lead to
genotoxic changes and/or cell death. From this
hypothesis, one can make the following specu-
lation regarding the biologic effects of mag-
netic fields: Cells with high rates of iron intake
(e.g., proliferating cells, cells infected by virus,
and cells with high metabolic rates such as
brain cells) would be more susceptible to the
effects of magnetic fields because hydrogen
peroxide, the substrate of the Fenton reaction,
is a metabolic product of mitochondria. This
may partially explain the negative results of
two previous studies investigating the effect of
magnetic fields on DNA. Reese et al. (1988)
reported no significant effect of a 60-Hz mag-
netic field (0.1 and 2 mT for 1 hr) on DNA
single-strand breaks in Chinese hamster cells.
However, during exposure, in order to decrease
DNA repair, their cells were kept under
iced conditions. In a study by Fairbairn and
O’Neill (1994), cells were first suspended in
agarose on a slide before exposure to a 50-Hz
pulsed magnetic field (peak flux density, 5 mT;
pulse duration, 3 msec). Cells suspended
in agarose are not in good physiologic con-
ditions. Thus, in both of these studies, cells
studied were probably not in a very active
metabolic state.

A question is whether the DNA strand
breaks induced by magnetic fields in our stud-
ies (Lai and Singh 1997a; present results) are
biologically significant. The flux densities
(0.01–0.5 mT) used in our studies are within
the levels that one could encounter in the
environment. Household and office levels of
extremely low-frequency magnetic fields can
vary from 0.01 to 1 µT. Intermittent levels can
reach more than 10 µT. Levels near a power
transmission line can be 10–30 µT, whereas
the magnetic flux density can vary between
0.1 and 1 mT near some electrical appliances
(e.g., electric blankets, hair dryers). Much
higher levels are expected in occupational
exposures (Bernhardt 1985; Gauger 1984;
Krause 1986; Tenforde and Kaune 1987).

To compare with the effect of ionizing
radiation, we have exposed rats to 2 Gy of 
X rays and assayed DNA single-strand breaks
in their brain cells. A peak increase of 76% was
observed at 30 min after exposure (average
length of DNA migration in nonexposed con-
trols = 133 ± 2.2 µm; in X-ray–exposed rats =
234 ± 2.2 µm; n = 3 in each treatment (unpub-
lished data). It may not be appropriate to com-
pare DNA damage caused by X rays with those
by magnetic fields directly, because different

mechanisms may be involved. However, from
the data presented in Figures 1 and 2, one can
infer that the effect of environmental magnetic
fields on DNA is relatively small compared
with that of 2 Gy of X rays. It seems that
cells may respond differently to high and low
levels of DNA damage. A recent report by
Rothkamm and Lobrich (2003) indicates a
lack of DNA double-strand break repair in
nondividing human fibroblasts exposed to very
low X-ray doses (~1 mGy). Rothkamm and
Lobrich speculated that “instead of repairing a
DSB [double-strand break] in a particular cell
with the risk of causing genetic alterations, it
could be beneficial for an organism to remove
the damaged cell and replace it by the division
of an undamaged neighboring cell.” However,
in the case of neurons that cannot divide
and be replaced, such a response could lead to
neurodegenerative diseases.

The human brain contains relatively high
amount of nonheme iron, mainly in glial cells
and myelin. It has been speculated that iron is
used in the production and maintenance of
myelin by oligodendrocytes (Francois et al.
1981; Gerber and Connor 1989). Thus,
myelinated nerve fibers, such as those of motor
neurons, could be more susceptible to damage
by magnetic fields. Increased risk of neuro-
degenerative diseases due to magnetic field
exposure could be a result of the death of neu-
rons and glial cells or demyelination. Increased
risks of amyotropic lateral sclerosis (Davanipour
et al. 1997; Hakansson et al. 2003; Johansen
and Olsen 1998; Savitz et al. 1998),
Alzheimer’s disease (Feychting et al. 2003;
Hakansson et al. 2003; Sobel et al. 1995), and
Parkinson’s disease (Noonan et al. 2002) have
been reported in occupational exposure to
extremely low-frequency electromagnetic fields.
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